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THE B O U N D A R Y  BEHAVIOR OF FUNCTIONS 
MEROMORPHIC IN BOUNDED PLANE REGIONS 

BY 

MIKIO NIIMURA 

ABSTRACT 

The object of this note is to extend the classical theorems of Fatou-Nevanlinna, 
Riesz-Nevanlinna, Riesz-Tsuji, Lusin-Privalov and Lusin-Privalov-Tsuji to 
bounded plane regions. 

The classical theorems of Fatou-Nevanlinna, Riesz-Nevanlinna, Riesz-Tsuji, 

Lusin-Privalov and Lusin-Privalov-Tsuji are well known (see [1], [6]). In this 

note these theorems will be extended to bounded plane regions, and those 

extensions will be given by the Theorem, Corollaries 1, 2, 3 and 4, respectively. 

Throughout this note let D be a bounded region in the complex plane, let p be 

an accessible point on the boundary OD of D from D and let Lp be a path in D 

terminating at p. 

Let L and L '  be two paths in D terminating at p. In this note we identify the 

two terminal points of L and L' ,  if for any open disc U centered at p two points 

q E L f3 U and q' ~ L '  f3 U can be joined by an arc included in D f3 U, and we 

distinguish their terminal points, if not. We shall next introduce on D certain 

regions with the characteristic of angular regions. 

Let ~0 be the projection from the universal covering surface S of D onto D. 

We map S onto an open unit disc A by a univalent holomorphic function t~. The 

composition function g = r o ~-~ is holomorphic and bounded. By lemma 1 of 

[3], any lift of a Lp by g-~ to A is a path terminating at a point B(Lp) on 0A. For 

any e >0 ,  let R(B(Lp),e,r) denote the sector region in A with radius r, of 

opening r - e having vertex at each B(Lp) and bisected by the radius drawn to 

B(Lp), such that R(B(Lp), e, r)N 3A, where the bar denotes closure, is a single 

point B(Lp). We denote by F(B(Lp)) the family of sector regions R (B (Lp), e, r) 

for each B(Lp), all e and r. By Lindel6f's theorem, g(G)A OD for any B(L, )  

and G E F(B(Lp)) is a single point p. 
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We now give a notation. Suppose as follows: D '  is a simply connected plane 

region bounded by a Jordan curve C'. There is the tangent line to C'  at a point p '  

on C'. L* is a path in D '  terminating at p'. L* and the tangent line form two 

angles which have each other distinct openings. Then we denote by A (L*) the 

smaller of the openings of the two angles. 

Let T be any covering transformation of A associated with g such that 

g o T = g. T is univalent and holomorphic. For any B(Lp) and G ~ F(B(Lp)), 
T(G)N c~A is a point or includes an arc. Suppose that T(G)N OA includes an 

arc. By Riesz' theorem, g reduces to a constant. This contradiction shows that 

T(G)A 3A is a single point. Let sj (j = 1,2) denote the two sides, of any 

R(B(Lp), e,r), each having B(Lp) as end point. By Carath6odory's theorem, 

A(T(sj)) is equal to A(sj). Next let (p' be another univalent holomorphic 

function from S onto another open unit disc A'. For any B(Lp) and G E 

F(B(Lp)), (~,o ~b-1)(G)A OA' is a single point, and A ((~b' o ~b-1)(sj))is equal to 

A (sj). Therefore the angle of G having vertex at B(Lp) does not depend on the 

choice of B (Lp) and univalent holomorphic functions from S onto A. Henceforth 

we may thus consider a B(Lp) and a univalent holomorphic function from S onto 

A, when we deal with F(B(Lp)). 
Suppose that there is a simply connected subregion of D bounded by a Jordan 

arc C on (gD and a Jordan arc in D terminating at the two end points of C. Let p 

lie on C and be distinct from the two end points of C. Suppose that there is the 

tangent line to C at p. It is then easy to see by choosing a branch of g-t that for 

any G ~ F(B(Lp)), A (g(sj)) is equal to A (st). Therefore at least in such a special 

case our regions g(G) have a meaning as angular regions. 

Let L and L '  be two paths in D terminating at the same point on OD. We say 

that L and L '  are homotopic, if there is a continuous family of paths L,, 
0 < s _-< 1, in D, each terminating at the same point on 3D, such that L0 = L and 

L1- -L ' ,  or such that Lo=L ' and L1 = L .  

For any G ~ F(B(Lp)), any two paths included in g(G)  and terminating at p 

are homotopic. In the following Remark which is an extension of Lindel6f's 

theorem, it is seen from the proof of lemma 3 of [3] that Lp and any path 

included in g(G) and terminating at p are homotopic. By applying Lindel6f's 

theorem to fog ,  the assertion of the Remark is valid: 

REMARK. If a function f holomorphic and bounded in D has an asymptotic 

value c along a Lp, then for any G E F(B(Le)), f(z) tends uniformly to c as 

z ---> p inside g(G). Here Lp and any path included in g(G) and terminating at p 

are homotopic. 
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Let A be an arbitrary set of points on 8A or OD and let u(K) be the harmonic 

measure of any closed set K, included in A, for A or D. If A is a Borel set, then 

u (A)  = supKcA U (K) is called the harmonic measure of A for A or D, and u (A)  

is also said to be zero or positive, according as u (A) is constant or not (see [2], 

pp. 6-7, pp. 87-88). 

THEOaEM. If f is a meromorphic function with bounded characteristic in D, 

then for every accessible p on 8D except possibly for a set of harmonic measure zero 
and of accessible points on 8D from D, there exists at least one Lp such that for any 

G E F(B(Lp)), f ( z )  tends uniformly to a limit as z ~ p  inside g(G). 

PROOF. Suppose, on the contrary, that there exists a set A, of positive 

harmonic measure and of accessible points on 8D from D, with the property that 

for any p on A we can find no Lp and G E F(B(Lp)) such that f ( z )  tends 

uniformly to a limit as z ~ p  inside g(G). There exists then a closed set K of 

positive harmonic measure and included in A. 

Let K~ = {b ~ OAIg(b ) ~ K}, where g(b) denotes the radial limit of g at a 

point b on 0A, and let u be the solution of the Dirichlet problem for D with 

boundary values 1 on K and 0 on OD - K. Then u is positive and harmonic in D, 

and u o g is also positive and harmonic in A. We shall next show that K~ is of 

positive harmonic measure. 

By theorem 2.6 of [1], the two exceptional sets Ej (j = 1, 2) of linear measure 

zero in corollary 1 at page 18 and theorem 2.1 of [1] are Borel sets. If Ej were of 

positive harmonic measure, then Ej would be of positive linear measure, as the 

Poisson integral representation shows. Therefore  Ej must be of harmonic 

measure zero. Thus g(b) and (u og)(b) exist at all points b on 0A except 

possibly for a set of harmonic measure zero. 

Every point on a component,  which is a nondegenerate continuum, of D is 

regular for the Dirichlet problem on D. The set B of irregular points on OD is 

polar and is a Borel set (see [2], theorem 4.7). B is of logarithmic capacity zero 

(see [2], lemma 5.6). Further, by theorem 1 of [5], B~ = {b E dA[ g(b) E B} is a 

Borel set. Therefore  it follows from theorem 2.16 of [1] that Ba is of harmonic 

measure zero. 

It is now seen that (u og)(b)= 0 at almost all b on 0 A - K a  with respect to 

harmonic measure. Therefore  there exists a set Ea,  of harmonic measure zero 

and included in A, such that {b E aA [ (u og)(b) ~ 0} C KA O Ea. K~ is a BoreI set, 

and if K~ were of harmonic measure zero, then by the Poisson integral 

representation u o g would be identically zero in A, Thus Ka must be of positive 

harmonic measure. 
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By the hypothesis of the Theorem there exists a positive harmonic function v 

such that logl /I  _-< v in D. Since f o g  and v og are analytic and harmonic in A 

respectively, f o g is a meromorphic function with bounded characteristic in A. In 

theorem 2.18 of [1], radial limits may be replaced by angular limits. It is hence 

seen that there exists a subset K~', of positive harmonic measure, of Ka with the 

property that for any point b on K~, (f o g)(a  ) and g (a) tend uniformly to a limit 

and a point p on aD as a ~ b inside any G E F(B (Lp)), where B (Lp) denotes 

the b. This implies that we can find an accessible p on A, a Lp and a 

G ~E F(B(Lp)) such that f ( z )  tends uniformly to a limit as z ~ p inside g(G). 

This contradiction shows that the assertion of the Theorem is valid. 

COROLLARY 1. Let A be a set of positive harmonic measure and of accessible 

points on OD from D and let [ be a meromorphic function with bounded 

characteristic in D. If, for all p on A and for all Lp one another being not 

homotopic, asymptotic values of f along Lp are equal to a constant, then f is 
identically constant in D. 

PROOF. Let K be a closed set of positive harmonic measure and included in 

A and let Ka be the set of terminal points on 0A of all lifts of all Lp, in the 

hypothesis of Corollary 1, by g-t to A. By Lindel6f's theorem, all the asymptotic 

values of f along Lp are the radial limits of f o g at all points on Ka. It is seen 

from the proof of the Theorem that Ka is of positive harmonic measure. By 

theorem 2.19 of [1], f o g  reduces to a constant, and hence f is identically 
constant in D. 

It is seen from theorem 2.16 of [1] and the proof of Corollary 1 that the 

assertion of the following Corollary 2 is valid: 

COROLLARY 2. Let A be a set of positive harmonic measure and of accessible 

points on OD from D and let f be a function holomorphic and bounded in D. If, for 

all p on A and for all L~ one another being not homotopic, asymptotic values o f f  

along Lp lie in a set o/logarithmic capacity zero, then f is identically constant in D. 

We may apply theorem 2.6 of [1] to functions meromorphic in the open unit 

disc. Here in the proof of this theorem we use the chordal metric on the 

Riemann sphere instead of the Euclidean distance on the complex plane. It is 

easy to see from corollary 1 on page 146 of [1] and the proof of Corollary 1 that 

the assertion of the following Corollary 3 is valid: 

COROLLARY 3. Let A be a set of positive harmonic measure and of accessible 

points on OD from D and let f be a function meromorphic in D. If, for all p on A,  for 
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all Lp one another being not homotopic and for a G E F(B (Lp )), where the opening 

of the angle of G having vertex at B (Lp) is equal to a positive constant, f ( z  ) tends 
uniformly to a constant as z ---> p inside g( G ), then f is identically constant in D. 

It is easy to see from theorem 1 of [6] and the proof of Corollary 1 that the 

assertion of the following Corollary 4 is valid: 

COROLLARY 4. Let A be a set of positive harmonic measure and of accessible 

points on OD from D and let f be a function meromorphic in D. If, for all p on A, for 

all Lp one another being not homotopic and for every G E F(B(Lp)), f ( z  ) tends 

uniformly to a limit, lying in a set of logarithmic capacity zero, as z ~ p inside 

g(G), then f is identically constant in D. 
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